
Designing for Raspberry Pi Compute
Modules and cameras

Raspberry Pi Ltd

2023-12-11: githash: 4c61fd9-clean

Colophon
2020-2023 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.)

This documentation is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND)

licence.

build-date: 2023-12-11

build-version: githash: 4c61fd9-clean

Legal Disclaimer Notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM

TIME TO TIME (“RESOURCES”) ARE PROVIDED BY RASPBERRY PI LTD (“RPL”) "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO

EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the

RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for

their selection and use of the RESOURCES and any application of the products described in them. User agrees to

indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the

RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use of

the RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous

environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or

communication systems, air traffic control, weapons systems or safety-critical applications (including life support

systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or

severe physical or environmental damage (“High Risk Activities”). RPL specifically disclaims any express or implied

warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High

Risk Activities.

Raspberry Pi products are provided subject to RPL’s Standard Terms. RPL’s provision of the RESOURCES does not

expand or otherwise modify RPL’s Standard Terms including but not limited to the disclaimers and warranties expressed

in them.

Designing for Raspberry Pi Compute Modules and cameras

Legal Disclaimer Notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://www.raspberrypi.com/terms-conditions-sale/
https://www.raspberrypi.com/terms-conditions-sale/

Document version history

Release Date Description

1.0 11 Dec 2023 • Initial release

Scope of document

This document applies to the following Raspberry Pi products:

Pi Zero Pi 1 Pi 2 Pi 3 Pi 4 Pi

400

Pi 5 CM1 CM3 CM4 Pico

Zero W H A B A+ B+ A B B A+ B+ All All All All All All All

* * *

Designing for Raspberry Pi Compute Modules and cameras

Document version history 2

Introduction
When designing a baseboard for Raspberry Pi Compute Modules that requires the use of the CSI-2 camera ports, there

are some constraints you need to consider during the design process.

 NOTE

Raspberry Pi does not recommend that new designs are based around Raspberry Pi Compute Module 1, 3, or 3+.

Raspberry Pi Compute Module 4 and newer are the recommended devices for new designs. While this document

applies to all models of Compute Module, it is targeted mainly at CM4-based devices.

This document explains what constraints exist, and how to design with them.

This white paper assumes that the Compute Module is running Raspberry Pi OS, and is fully up to date with the latest

firmware and kernels. Raspberry Pi Ltd strongly advises moving to the new libcamera API framework for any new work.

The older camera APIs will not be available on future products.

Designing for Raspberry Pi Compute Modules and cameras

Introduction 3

Overview of the system

Camera interfaces

The SoCs on the Compute Modules have two Camera Serial Interfaces version 2 (CSI-2) hardware interfaces (see

https://www.mipi.org/specifications/csi-2), and can therefore support two active CSI-2 cameras. CSI-2 is a protocol

specification; it does not cover any software topics.

 NOTE

Although only two cameras can be active at any one time, CSI-2 muxes are supported, so more cameras can be

attached, with only two able to supply images at any one time.

The CSI-2 ports are used to transfer the image data from the camera sensor to the Compute Module. In addition, the

camera must also be connected to one of the Compute Module’s I2C or SPI ports; these interfaces are used for command

data that is sent to the camera to set it up, start it streaming, etc.

Raspberry Pi Ltd sells several CSI-2-based cameras that cover most use cases. All of these cameras are fully supported at

the hardware and software levels. When used with the Raspberry Pi Compute Module 4 IO board, and using a default

version of Raspberry Pi OS, the cameras work with only minor configuration changes.

I2C routing

The most complex part of designing a board using Raspberry Pi Compute Module 4 and a camera is probably the I2C

routing. There are many options available, and this complexity can cause problems when designing both the PCB and the

accompanying software. The following diagram gives an overview of the I2C routing that is possible using the BCM2711

SoC on Compute Module 4.

Designing for Raspberry Pi Compute Modules and cameras

Camera interfaces 4

https://www.mipi.org/specifications/csi-2

The Broadcom Serial Control bus is a proprietary bus compliant with the Philips® I2C bus/interface version 2.1 January

2000. The BCM2711 has seven BSC devices, which we shall refer to as I2C devices in this document. More details of the

BSC hardware blocks can be found in chapter 3 of the BCM2711 datasheet, here:

https://datasheets.raspberrypi.com/bcm2711/bcm2711-peripherals.pdf

 NOTE

On devices before Raspberry Pi Compute Module 4, there are only three BSC devices, BSC0-2. BSC2 is reserved for use

by the HDMI DDC channel.

Control of the routing is via device tree. The base device tree files will define the default routing, but that can be overridden

with dtoverlay commands, or a custom base file can be used for specific boards.

The use of the pinctrl-mux on BSC0 requires further explanation. The SoCs used in the earlier Raspberry Pi models only

had three I2C ports: i2c-1 exposed on the GPIO header, i2c-2 used for HDMI DDC communications, and i2c-0 used by

the firmware for HAT probing (on GPIOs 0 and 1), for the camera, and for the display. To avoid removing any of the

functionality in switching to Linux kernel control of the camera and display, multiplexing was necessary to provide enough

ports for the required camera and display peripherals. The kernel provides the pinctrl-mux module to handle exactly this

situation where the hardware supports multiple routings of hardware blocks to physical pins.

Although there is only one piece of I2C hardware (BSC0), the driver multiplexes the output to provide two sub-devices,

named i2C-0 and i2c-10. BSC0 is regarded as a parent device (which appears as i2c-22 to Linux; this should not be used

directly). This means the throughput is reduced as the drivers need to reassign the GPIO muxing appropriately for each

transfer, but since these lines are usually used to control the cameras and DSI displays which are low-bandwidth, this is

an acceptable compromise. The principles of driver muxing are explained here: https://www.kernel.org/doc/html/latest/

i2c/i2c-topology.html.

 NOTE

The 28/29 mapping is largely irrelevant on BCM2711-based devices with Ethernet, as those are routed to the Ethernet

PHY rather than exposed. They could be used on a Raspberry Pi Compute Module 4S device which does not have

Ethernet support.

I2C dtoverlay options

If you are using the Raspberry Pi-supplied device tree files, then you can use the dtoverlay command in config.txt to

adjust the routing as necessary.

To reassign pins to the alternative routing:

dtoverlay = i2c<N>, pins_A_B

e.g.

dtoverlay = i2c1, pins_44_45

To swap the GPIO assignments on the i2c-0 and i2c-10 devices, use:

dtoverlay=cm_swap_i2c

This results in i2c-10 on GPIOs 0/1 and ic2-0 on GPIOs 44/45.

Installing one or two cameras on the CM 4 IO board

Designing for Raspberry Pi Compute Modules and cameras

I2C dtoverlay options 5

https://datasheets.raspberrypi.com/bcm2711/bcm2711-peripherals.pdf
https://www.kernel.org/doc/html/latest/i2c/i2c-topology.html
https://www.kernel.org/doc/html/latest/i2c/i2c-topology.html

 NOTE

Although standard, standalone Raspberry Pi SBCs have camera autodetection (enabled by default by the

camera_auto_detect=1 line in config.txt), this has no effect on the Compute Modules, as the firmware does not

include camera support. It is expected that Compute Module 4 users will either set up the camera using entries in the

config.txt file as described below, or create a dedicated base device tree file for their custom board.

Edit the config.txt file using your favourite editor, and add the following Device Tree Overlay (dtoverlay) commands to

the end of the file:

dtoverlay=imx477
dtoverlay=imx708,cam0

These overlay commands load the driver for the IMX477 (Raspberry Pi High Quality Camera) to cam1, and the driver for

the IMX708 (Camera Module 3) to cam0. The CSI port for the camera is specified after the camera type. Omitting the port

defaults to cam1.

Raspberry Pi provides the following drivers which can be used for all current and older Raspberry Pi cameras:

Sensor Device tree name Product

Omnivision OV5647 ov5647 Camera Module

Sony IMX219 imx219 Camera Module 2

Sony IMX708 imx708 Camera Module 3

Sony IMX477 imx477 High Quality Camera

Sony IMX296 imx296 Global Shutter Camera

Other drivers are also available for third-party boards.

Designing for Raspberry Pi Compute Modules and cameras

Installing one or two cameras on the CM 4 IO board 6

Designing a custom baseboard for
use with cameras

Constraints

The I2C diagram from a previous section shows which GPIOs can be assigned to which I2C driver. There is added

complexity with the muxing on BSC0.

When using libcamera and the Linux kernel camera drivers, the I2C ports used for the camera and displays can also be

used for other devices. This was not possible when using the older legacy camera drivers where the firmware controlled

the I2C. However, the overall bandwidth available is reduced due to the muxing stage.

Assigning ports with device tree

It is possible to reassign the I2C ports used by libcamera to any of the other ports indicated on the diagram above;

however, this will require custom overlays, as the standard device tree is set up for the defaults that Raspberry Pi Ltd uses

in-house.

As an example of what you will need to change, here is an extract from the device tree overlay imx219-overlay.dts which

is located in the Raspberry Pi Ltd Linux kernel source tree https://github.com/raspberrypi/linux. Device tree overlays

are in the linux/arch/arm/boot/dts/overlays folder.

 i2c_frag: fragment@100 {
 target = <&i2c_csi_dsi>;
 __overlay__ {
 #address-cells = <1>;
 #size-cells = <0>;
 status = "okay";

 #include "imx219.dtsi"

 vcm: ad5398@c {
 compatible = "adi,ad5398";
 reg = <0x0c>;
 status = "disabled";
 VANA-supply = <&cam1_reg>;
 };
 };
 };

We can see that for the default camera (which is cam1), the I2C target is i2c_csi_dsi. Later on in the file, we have an

overrides section:

 cam0 = <&i2c_frag>, "target:0=",<&i2c_csi_dsi0 >,
 <&csi_frag>, "target:0=",<&csi0>,
 <&clk_frag>, "target:0=",<&cam0_clk>,
 <&cam_node>, "clocks:0=",<&cam0_clk>,

Designing for Raspberry Pi Compute Modules and cameras

Constraints 7

https://github.com/raspberrypi/linux
https://github.com/raspberrypi/linux
https://github.com/raspberrypi/linux
https://github.com/raspberrypi/linux
https://github.com/raspberrypi/linux

 <&cam_node>, "VANA-supply:0=",<&cam0_reg>,
 <&vcm>, "VANA-supply:0=", <&cam0_reg>;

Looking at the i2c_frag we see it overrides target in the fragment with an offset of 0 (not used). This of course is the I2C

controller, and it is set to i2c_csi_dsi0, the default for camera 0.

 NOTE

i2c_csi_dsi0 used to be named i2c_vc but has been changed for Raspberry Pi 5 compatibility.

You can develop your overlays to reassign the I2C controllers to reflect your hardware, as long as you keep to the routing

rules shown in the diagram.

So, if you are using cam1, but want it on BSC3:

 i2c_frag: fragment@100 {
 target = <&i2c3>;
 __overlay__ {
 #address-cells = <1>;
 #size-cells = <0>;
 status = "okay";

 #include "imx219.dtsi"

 vcm: ad5398@c {
 compatible = "adi,ad5398";
 reg = <0x0c>;
 status = "disabled";
 VANA-supply = <&cam1_reg>;
 };
 };
 };

It is worth pointing out at this point how the CSI peripherals are managed.

 csi_frag: fragment@101 {
 target = <&csi1>;
 csi: __overlay__ {
 status = "okay";
 brcm,media-controller;

 port {
 csi_ep: endpoint {
 remote-endpoint = <&cam_endpoint>;
 clock-lanes = <0>;
 data-lanes = <1 2>;
 clock-noncontinuous;
 };
 };
 };
 };

Designing for Raspberry Pi Compute Modules and cameras

Assigning ports with device tree 8

Raspberry Pi’s advice when developing your baseboard is to develop one overlay that defines all the attached hardware,

rather than requiring multiple 'dtoverlay' lines to configure each part automatically or having a custom base DT file.

Example hardware schematics

The Raspberry Pi Compute Module 4 IO board schematics are an excellent reference to the hardware design required

when building your own baseboard.

The schematics are in the datasheet, which can be found here:

https://datasheets.raspberrypi.com/cm4io/cm4io-datasheet.pdf

Designing for Raspberry Pi Compute Modules and cameras

Example hardware schematics 9

https://datasheets.raspberrypi.com/cm4io/cm4io-datasheet.pdf

	Designing for Raspberry Pi Compute Modules and cameras
	Colophon
	Legal Disclaimer Notice
	Document version history
	Scope of document

	Introduction
	Overview of the system
	Camera interfaces
	I2C routing
	I2C dtoverlay options
	Installing one or two cameras on the CM 4 IO board

	Designing a custom baseboard for use with cameras
	Constraints
	Assigning ports with device tree
	Example hardware schematics

