
Raspberry Pi 4 Boot Security
Raspberry Pi Ltd

2023-06-28: githash: fc34cc2-clean



Colophon
© 2020-2023 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.)

This documentation is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND)

licence.

build-date: 2023-06-28

build-version: githash: fc34cc2-clean

Legal Disclaimer Notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM

TIME TO TIME (“RESOURCES”) ARE PROVIDED BY RASPBERRY PI LTD (“RPL”) "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO

EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the

RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for

their selection and use of the RESOURCES and any application of the products described in them. User agrees to

indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the

RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use of

the RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous

environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or

communication systems, air traffic control, weapons systems or safety-critical applications (including life support

systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or

severe physical or environmental damage (“High Risk Activities”). RPL specifically disclaims any express or implied

warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High

Risk Activities.

Raspberry Pi products are provided subject to RPL’s Standard Terms. RPL’s provision of the RESOURCES does not

expand or otherwise modify RPL’s Standard Terms including but not limited to the disclaimers and warranties expressed

in them.

Raspberry Pi 4 Boot Security

Legal Disclaimer Notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://www.raspberrypi.com/terms-conditions-sale/
https://www.raspberrypi.com/terms-conditions-sale/


Document version history

Release Date Description

1.0 30 April 2021 Initial draft

1.1 18 October 2021 Remove NDA requirements

1.2 17 December 2021 Copy edited

1.3 07 January 2022 Public release

1.4 31 May 2023 Update to latest secure boot

information

Scope of document

This document applies to the following Raspberry Pi products:

Pi 0 Pi 1 Pi 2 Pi 3 Pi 4 Pi 400 CM1 CM3 CM4 Pico

0 W H A B A B B All All All All All All

* * *

Raspberry Pi 4 Boot Security

Document version history 2



Introduction
This white paper describes Raspberry Pi Ltd’s approach to boot security on the Raspberry Pi 4 family of devices, based on

the BCM2711 system on a chip (SoC).

Goals

Raspberry Pi Ltd’s goals for boot security are as follows:

• Enable industrial customers to ensure that a Raspberry Pi 4 only runs software authorised by them.

• Ensure customers have full control of the operating system (OS) image and sign it with their own RSA private key.

• Avoid centralised code-signing servers — the OS image and signing tools are open source and are run by the

customer.

• Provide a solution that runs on a standard Raspberry Pi 4 — no external hardware requirements.

• Provide a solution that supports remote software updates, e.g. kernel patches.

Notable improvements over earlier models than Raspberry Pi 4 include:

• The RSA read-only memory (ROM) keys are public, so no shared secrets can be exposed by, for example, decapping

or JTAG access. The private RSA key for signing bootloader firmware is kept secure inside Raspberry Pi Ltd and is

not released to customers.

• The process to bind the device to a customer’s public key is public.

• A single boot.img that combines all the previously separate firmware and configuration files is provided for the third-

stage boot, meaning more robust atomic updates and preventing a non-recoverable failure of the system.

• Configurations can be validated prior to committing to one-time programmable (OTP) memory.

Limitations

Limited hardware support is offered on the BCM2711 SoC:

• No Secure OS, e.g. TrustZone, or secure processors.

• No digital rights management (DRM) or high-bandwidth digital content protection (HDCP).

• Limited support for private keys in OTP. Hardware protection here is limited; there is the ability to store a private key

in OTP, but there is no secure enclave.

• Fully secure OS boot is only available on the BCM2711 B1/C0 steppings.

Out of scope of this document

• Instructions on making and installing signed images; this is covered in a separate document.

• Encrypting the boot partition.

• Creating a security-enhanced version of Raspberry Pi OS.

Raspberry Pi 4 Boot Security

Goals 3



Software security on Raspberry Pi 4
Signed security is only available on the B1/C0 stepping of the BCM2711. The B0 stepping does not have the RSA public

keys in its ROM that would be needed for the ROM to verify the serial peripheral interface (SPI) electrically erasable

programmable ROM (EEPROM) bootloader.

The stepping revision of the chip is etched on the top of the chip itself, as a subfield of the part number. Alternatively, once

booted you can determine the stepping using the following command:

sudo busybox devmem 0xfc404000

This will return 0x27110010 for BCM2711B0, 0x27110011 for BCM2711B1, or 0x27110020 for BCM2711C0.

 NOTE

Raspberry Pi Compute Module 4 and Raspberry Pi 400 are only available with the C0 or newer stepping. Older

BCM2711-based devices may or may not use the B0, B1, or C0 stepping, which may limit the applicability of the

security process.

Overview of the secure boot process

• Signed boot images provide a chain of trust from the ROM to the kernel and the initramfs initial ramdisk, including

graphics processing unit firmware and configuration data.

• The boot image files are file allocation table (FAT) disk image files containing the normal files from the boot partition

as a single atomic file. These are loaded as a ramdisk loopback file system by the bootloader.

• Signed boot images can be loaded from any boot mode, e.g. network boot.

• OS updates are supported by downloading a new boot.img file, which is effectively an atomic update.

• Signed boot is enabled via OTP as part of the customer’s usual Raspberry Pi CM4 provisioning process. Once

enabled, signed boot cannot be switched off.

• EEPROM code is signed by Raspberry Pi Ltd and verified by RSA key in the ROM. There is no ability on the BCM2711

to countersign the Raspberry Pi Ltd code with a customer key.

• In secure boot mode the bootloader does check the hash of the VL805 USB hub firmware, but please note that the

VL805 ROM itself does not support code signing of its firmware.

A brief description of the chain of trust

The diagram below shows the root of trust for the secure boot process.

Raspberry Pi 4 Boot Security

Overview of the secure boot process 4



The process is as follows:

• The device boots, and if secure boot is enabled in the OTP, the ROM in the BCM2711 will verify the second-stage

bootloader against each boot ROM key in order, taking into account whether the key has been previously revoked by

comparing it against the OTP revocation bits.

• If the verification succeeds then the Bootsys in SPI EEPROM is executed; if not, the boot will be halted.

• Bootsys verifies that the customer key in SPI EEPROM matches the hash of the key stored in the OTP.

• Bootsys verifies the SPI EEPROM config against the customer key.

• Bootsys now executes Bootmain.

• Bootmain does some setup, then loads the boot.img into a ramdisk.

• Bootmain verifies the boot.img against the boot.sig file.

• Bootmain loads the start.elf file from the ramdisk and runs it.

• start.elf loads the Linux kernel and associated device trees and overlays from the ramdisk, and the main Linux

boot is started.

The individual parts of each process are covered in detail in the next sections.

ROM verification process for the second-stage bootloader

If secure boot is enabled in the OTP, then the ROM will verify the second-stage bootloader/recovery.bin image against

the ROM keys before launching it.

• The signature only applies to the second-stage executable. There is no check for the entire EEPROM image.

• The ROM also checks the signature of recovery.bin when loaded via usbboot (rpiboot).

• The new bootloader that supports signed boot will be signed with the signed-boot ROM key. It is possible to revoke

the ROM development key by setting an OTP bit, which effectively revokes all previous bootloader releases on that

board.

Second-stage EEPROM resources

Before loading the start.elf file, the second-stage bootloader loads additional resources, e.g. the VLI universal serial bus

Raspberry Pi 4 Boot Security

ROM verification process for the second-stage bootloader 5



(USB) firmware. These resources are considered to be immutable, and if signed boot is enabled (via OTP) then the

SHA256 hash of the resource is checked as it is read into memory. This is compared against SHA256 hashes generated

at build time and compiled into the bootcode.bin binary. Since bootcode.bin has already been verified by the ROM, the

compiled hashes can be trusted.

Developing images for the secure boot process

It is possible to test and develop the secure boot process without making permanent changes to the OTP on the

BCM2711. This allows the testing of images to ensure they are correct before finally enabling secure boot by making

permanent and irrevocable changes to the OTP.

During this development stage, a key is programmed into the EEPROM, which is then made read-only. This improves

security for trivial file transfer protocol (TFTP) boot or for kiosk-type applications where a USB or Secure Digital (SD) card

may be accessible. However, it would be susceptible to replacement of the EEPROM, so this must be assumed to be

physically secure. In short, secure boot is suitable for environments where physical access to the board is restricted, as

well as for developing signing for test purposes.

You can develop the signed boot process to this stage using the following steps:

• Customer builds and signs boot.img with their RSA private key.

• The EEPROM image is updated to include the customer’s RSA public key.

• The EEPROM image is flashed using the Raspberry Pi CM4 provisioning process, and EEPROM write protect is

enabled.

Finally securing the boot process

This extends past the development level by storing a digest of the customer key in OTP, and disables the key in ROM. The

bootloader will only load boot.img files signed with the customer RSA key, and the ROM prevents any attacker from

replacing the onboard EEPROM with one containing their code.

Even this level of signing would not protect against the replacement of the Raspberry Pi CM4 or the SoC itself in an end

device. If this is a potential concern, the customer may wish to use customer OTP rows to store a decryption key to

decode, for example, the rootfs file system.

Features include:

• Permanently enables signed boot: only signed boot images can be loaded once set up.

• Revokes the ROM 'development key': it is not possible to downgrade the SPI EEPROM bootloader to an older or non-

secure version.

• An SHA256 digest of the customer’s public key is written to OTP and validates the customer’s RSA public key in the

EEPROM.

• The bootloader EEPROM configuration must be signed with the customer’s private key, which restricts which boot

modes will be tried.

• If the EEPROM public key or configuration is not valid then the boot stops.

Once security flags are set during the Raspberry Pi CM4 EEPROM flashing process, they cannot be unset.

Raspberry Pi 4 Boot Security

Developing images for the secure boot process 6



Implementation details

boot.img

The boot.img file is a disk image of up to 180MB of a raw block device containing a FAT file system which is mounted as

a ramdisk/loopback file system. If signed boot is required then the RSA signature is verified before the bootloader mounts

the ramdisk.

In secure boot mode, the bootloader only looks for boot.img or boot.sig when scanning through the currently available

set of bootable media, i.e. SD, USB, NVMe, network or RPIBOOT, as defined by BOOT_ORDER. Once it finds a matching file,

it reads the entire file into memory, verifies the signature, and if everything is as expected, it mounts the file contents as a

ramdisk. If boot.img or boot.sig is not found, then that particular BOOT_ORDER is treated as 'firmware not found', and

the bootloader moves to the next boot mode.

Scripts in the usbboot repository are provided to automate the process of creating a .img file from a directory of source

files (start.elf, kernel, etc). rpi-eeprom-config has been updated to provide support for signing the EEPROM

configuration and storing the RSA public key in the EEPROM image.

If the 'tryboot' flag is set on a reboot (sudo reboot "0 tryboot"), then the bootloader will search for tryboot.img instead

of boot.img. This allows signed boot images to be tested before being activated.

The source for boot.img is a directory containing the files from the boot partition of Raspberry Pi OS. To reduce the load

time, files that are not relevant for the given board (e.g. unused kernel images) can be left out. Since the boot image is just

a single file, it is easy to update it to a new version.

Firmware compatibility checks

The bootloader verifies that start.elf supports ramdisk images before executing it. If not, a version compatibility error

message is displayed, and booting stops. The firmware compatibility flags are encoded in a special section of the .elf
file, and in future the boot image scripts will also verify this to avoid accidentally creating non-bootable image files.

Raspberry Pi 4 Boot Security

boot.img 7



Extra steps required for Raspberry Pi
4 and Raspberry Pi 400
The ROM does not support loading recovery.bin from the SD card in secure boot mode. This means that for Raspberry

Pi 4 and 400 the nRPIBOOT programming method must be used; this requires a general-purpose input/output (GPIO) pin

to be selected that when pulled low will enable nRPIBOOT mode. This is not necessary on Raspberry Pi CM4 as a GPIO pin

is preprogrammed during manufacture; this is connected to a jumper on the Raspberry Pi CM4 IO board.

Several GPIO pins can be used for nRPIBOOT on Raspberry Pi 4 and 400: pins 2, 4, 5, 6, 7, and 8. There is an additional

constraint in that any HAT (Hardware Attached on Top) or GPIO-connected device being used should not pull the selected

pin low by default, as this will enable nRPIBOOT rather than SD card booting.

The recommended GPIO pin is GPIO8 (SPI CE0), which is not pulled low by default. Once chosen, the GPIO to be used as

the boot selector is stored in the OTP, and is set using recovery.bin.

Please refer to the GPIO section in the BCM2711 datasheet for more details on default GPIO allocations.

Raspberry Pi 4 Boot Security

Extra steps required for Raspberry Pi 4 and Raspberry Pi 400 8



More information

Performance

The overhead of verifying a minimal boot.img (about 9MB) is approximately 3.5 seconds, which directly influences the

boot time. Most of this is the CPU overhead of the SHA256 calculation, and hence unavoidable.

Other security measures

When making a Raspberry Pi Ltd system secure other areas will need consideration. The necessary steps might include

(but are not limited to):

• Change default usernames and passwords.

• Set SSH security to allow key-based access only.

• Disable sudo access.

• Disable login as 'root'.

• Remove the pi user from the GPIO group.

• Install firewalls.

• Improve server security, e.g. install fail2ban.

• Disable any unnecessary BOOT_MODES in the EEPROM config BOOT_ORDER, e.g. remove network boot if not

required.

• Use LUKS to encrypt the root filesystem.

• Set the eeprom_write_protect=1 flag in config.txt when enabling secure boot, and then pull nWP low to prevent OS-

level security vulnerabilities from modifying the firmware, so that hacks are less likely to survive a reboot.

The details of making these changes to your operating system, should they be required, are outside the scope of this

white paper, but can be found via a web search.

Answers to common questions

1. Which cryptographic algorithms for firmware authentication are used?

RSA2048.

2. Where is the root of trust stored?

Raspberry Pi Ltd.

3. Which secure boot-related keys can and cannot be set by the customer?

The boot ROM contains four keys that are secured by Raspberry Pi Ltd and cannot be changed by the customer.

Only two are currently used. All of these keys can be revoked using OTP. The customer can set a key in EEPROM that

is used for signing the customer image. This key is protected by a hash in OTP.

4. How is secure boot mode enabled and persisted in the device’s configuration?

Flags in the BCM2711 on-board OTP.

5. Does the chip support an anti-rollback for firmware images?

No; it is possible to roll back to earlier versions of signed software.

Raspberry Pi 4 Boot Security

Performance 9



6. In which type of memory is the boot ROM implemented?

Mask-based ROM.

7. Which debug interfaces are available?

JTAG. A flag can be set in OTP to disable JTAG access to the VideoCore processor; once set, access cannot be re-

enabled.

8. What hardware crypto is supported?

The BCM2711 has no hardware cryptographical support.

9. What is the type of key storage?

There is no dedicated key storage on the BCM2711. A customer key can be stored in OTP, but this is potentially

visible to the root user within the signed OS image.

10. Is there a hardware random number generator, and if so what is the entropy source for it?

There is a hardware RNG, but no implementation details are available.

11. Are any Secure Execution Environments supported?

No.

12. Which external or internal non-volatile memories, such as flash, does the BCM2711 support?

SPI EEPROM and SD/EMMC are supported by the boot ROM for loading the second stage. Secure boot disables the

SD/EMMC ROM boot mode.

13. Does the chip support execute-in-place from external non-volatile memory?

No.

Other

There is a buildroot-based secure boot example in the Raspberry Pi Ltd GitHub repository. It should be possible to simply

copy and paste the bash commands and see secure boot working by following these instructions:

Secure boot example

Raspberry Pi 4 Boot Security

Other 10

https://github.com/raspberrypi/usbboot/tree/master/secure-boot-example



	Raspberry Pi 4 Boot Security
	Colophon
	Legal Disclaimer Notice
	Document version history
	Scope of document

	Introduction
	Goals
	Limitations
	Out of scope of this document

	Software security on Raspberry Pi 4
	Overview of the secure boot process
	A brief description of the chain of trust

	ROM verification process for the second-stage bootloader
	Second-stage EEPROM resources
	Developing images for the secure boot process
	Finally securing the boot process

	Implementation details
	boot.img
	Firmware compatibility checks

	Extra steps required for Raspberry Pi 4 and Raspberry Pi 400
	More information
	Performance
	Other security measures
	Answers to common questions
	Other


